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AbstractÐWe propose a method for automatically classifying facial images based

on labeled elastic graph matching, a 2D Gabor wavelet representation, and linear

discriminant analysis. Results of tests with three image sets are presented for the

classification of sex, ªrace,º and expression. A visual interpretation of the

discriminant vectors is provided.

Index TermsÐComputer vision, face recognition, facial expression recognition,

Gabor wavelets, principal component analysis, discriminant analysis.
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1 INTRODUCTION

THE human face plays a central role in social interaction, hence it is
not surprising that automatic facial information processing is an
important and highly active subfield of pattern recognition
research [5]. The face displays a complex range of information
about identity, age, sex, ªraceº1 well as emotional and attentional
state. This paper focuses on the problem of extracting these
semantic-level attributes of an individual face from single digital
images. The examples chosen to demonstrate our method are facial
expression, sex, and ªrace,º however, the technique may extend to
other facial attributes.

The method proposed in this paper synthesizes aspects of two

major approaches to facial image processing: Gabor-wavelet-

labeled elastic graph matching [9], [12] and ªeigenfaceº or

ªFisherfaceº algorithms [11], [1], [8] based on statistical represen-

tation of face space. Both the eigenface and Fisherface techniques

require precise normalization and registration of facial internal

features. Moreover, performance of the eigenface algorithm is

improved by morphing the face to a standard shape [3]. By

contrast, with this algorithm, a graph structure is registered

approximately with the head. The features used, based on the 2D

Gabor wavelet transform, are a compromise in the trade-off

between spatial and spatial frequency domain accuracy [4] and are

robust to small changes in the grid node positions. A pixel-based

input representation, such as is used in previous work on

eigenfaces, is not as robust to errors in registration. This is the

major novel feature of the algorithm we describe: It combines the

advantages of the Gabor wavelet representation with the ability to

train the system simply and quickly from examples in a manner

similar to the Fisherface algorithm.

2 FACE CLASSIFICATION ALGORITHM

The algorithm can be divided into two broad steps: registration of
a grid with the face and face classification based on feature values
extracted at grid points. In this paper, facial grids are registered
either automatically, using labeled elastic graph matching [9], [12]
(as in Section 3, which describes a live demo system), or by
manually clicking on points of the face (as in Sections 4 and 5,
which describes basic research on facial expression recognition).
This paper is concerned with face classification after the grid has
been registered and the algorithm may be adapted for use with
other grid registration schemes. Labeled elastic graph matching
has been described in detail in the papers cited and will not be
discussed in depth here.

Images are first transformed using a multiscale, multiorienta-
tion set of Gabor filters (Fig. 1). The grid is then registered with the
face. Two types of grid are considered in this paper: a rectangular
grid (Section 3) and a fiducial grid with nodes located at easily
identifiable landmarks of the face (Sections 4 and 5). The amplitude
of the complex valued Gabor transform coefficients are sampled on
the grid and combined into a single vector, the labeled graph
vector (or LG vector in Fig. 1). The ensemble of LG vectors from a
training set of images are subjected to principal components
analysis (PCA) to reduce the dimensionality of the input space. LG
vectors project into the lower dimensional PCA space (LG-PCA
vectors). The ensemble of LG-PCA vectors from the training set are
then analyzed using linear discriminant analysis (LDA) in order to
separate vectors into clusters having different facial attributes.
Input vectors in the original LG space may then be analyzed using
the same LDA to determine their attributes.

2.1 Two-Dimensional Gabor Wavelet Representation

Use of the 2D Gabor wavelet representation in computer vision
was pioneered by Daugman in the 1980s [4]. More recently, von
der Malsburg's group has developed a face recognition system
making use of this representation [9], [12].

A complex-valued 2D Gabor function is a plane wave restricted
by a Gaussian envelope:

	�k;x� � k2
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The multiplicative factor k2 ensures that filters tuned to different
spatial frequency bands have approximately equal energies. The
term exp�ÿ�2=2� is subtracted to render the filters insensitive to the
overall level of illumination. The Gabor wavelet representation
allows description of spatial frequency structure in the image
while preserving information about spatial relations. The complex
amplitude of the transforms is used as features to test for the
presence of spatial structure, restricted to a band of orientations
and spatial frequencies, within the Gaussian envelope. The
amplitude information degrades gracefully with shifts in the
image location at which it is sampled, over the spatial scale of the
envelope.

For the 256� 256 images used in the experiments below,
five spatial frequencies were used, with ki � �=2i and i from 1

to 5. Six angular orientations (from 0 to 150 degrees in 30

degree steps) were used. For all experiments, � � �, setting the
bandwidth of the filters to roughly one octave in spatial
frequency. Input images are convolved with the Gabor filters
and the magnitudes of the complex-valued filter responses are
sampled at points on the facial grid and combined into a single
LG vector. For the experiments in Section 3 (grid of 49 nodes),
the LG vector is of dimension 1,470, whereas, for Sections 4
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and 5 (grid of 34 nodes), it is of dimension 1,020.

2.2 Discriminant Analysis

The examples we consider can be treated using two class

discriminant analysis, e.g., male or female. For facial expression,

the presence or absence of each expression is tested and the

outcomes used to classify the expression.2 Application of a binary

classifier to ªraceº is possible only because our training and test

sets consist of faces which are clearly identifiable as either ªEast

Asianº or ªnon-East Asian.º
Two-class linear discriminant analysis seeks a single projection

optimally separating the two labeled clusters in the training set,

while minimizing variance within each projected cluster. A

complete description of LDA may be found in Duda and Hart

[6], whose notation we preserve here. Consider a set of n d-

dimensional vectors x1; . . . xn, with n1 vectors in the set X1 and n2

in the set X2. The projection of the sample x onto direction defined

by vector w is y � wtx. The scatter of the projected vectors is

defined as:

~s2
i �

X
y2Yi
�yÿ ~mi�2;

where ~mi is the mean of the projected samples of set i. Scatter

within-cluster and between-cluster, are defined, respectively, as:

SW �
X1

i�0

X
x2Xi

�xÿmi��xÿmi�t; SB � �m1 ÿm2��m1 ÿm2�t

SB, as the outer product of two vectors, has rank of at most one

and, for any w, SBw is in the direction of m1 ÿm2.
We seek a projection direction, defined by vector w, along

which the ratio of the between class scatter to the within class

scatter, J�w� is maximized,

J�w� � � ~m1 ÿ ~m2�2
~s2

1 � ~s2
2

� wtSBw

wtSWw
: �2�

A vector maximizing J over w must satisfy the generalized

eigenvalue problem, SBw � �SWw. Since SBw is in the direction of

m1 ÿm2 then w � Sÿ1
W �m1 ÿm2�. Hence, for the two class

problem, one need not solve the full generalized eigenvalue

system.
The number of training images, typically of order 102, is smaller

than the input dimensionality of the LG vectors, which is roughly

103. Therefore SW is singular. In analogy with the Fisherface

method, the data set is first projected into a lower dimensional

space found using principal components analysis (PCA), then LDA

is applied. Input LG vectors are first transformed by subtracting

the mean: ��i � xi ÿm. The principal components of the training

data set are given by the eigenvectors of its covariance matrix,

C � 1
n

Pn
i�1 ��i��it . Because of the high dimensionality of the LG

vectors, C is very large; however, there are only nÿ 1 nonzero

eigenvalues and only the corresponding eigenvectors are relevant

for describing the distribution of the training set. In practice, only

N eigenvectors having the largest eigenvalues (and, hence, the

largest variance in the data set) are kept and the discriminant

analysis can be performed in a space having smaller dimension N ,

in which the within-class scatter matrix is nonsingular. If Wpca is

the matrix of eigenvectors having the N largest eigenvalues (Wpca

is of dimension d�N), (2) becomes

J�w� � wtWt
pcaSBWpcaw

wtWt
pcaSWWpcaw

:

If every eigenvector with nonzero eigenvalue is included in Wpca,

then the within-class scatter of projected training samples can be

reduced to zero. Including too many of the nÿ 1 eigenvectors in

the LDA analysis results in overfitting to the training set and no

improvement to or, in some cases, worsening of the generalization

rate. The number of retained eigenvectors was chosen empirically

to optimize generalization performance.

2.3 Image Classification

To classify an input LG vector, it is projected along the

corresponding discriminant vector calculated from training exam-

ples. The distance to each cluster center is calculated, normalized

by the standard deviation, ~�j, of the projected cluster
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Fig. 1. The Gabor-labeled elastic graph representation of a facial image.

2. Our preliminary experiments on facial expression classification using
multiclass LDA show significantly lower classification rates.



dj � �xÿm� �wÿ ~mj

~�j
; �3�

where j 2 f0; 1g for the two clusters. The input sample is classified

as a member of the nearest cluster.

3 EXPERIMENTS: SEX, ªRACE,º AND EXPRESSION

A classifier was trained to categorize face images according to sex:

male/female, ªraceº: east-Asian/other, expression: smile/other.

The image set for these experiments was acquired during a live

demo held at ATR on 5 and 6 November 1998. The faces are, in

almost all cases, easily recognizable as either east-Asian or not. The

demo is fully automatic, positioning a 7� 7 rectangular grid on the

face using our local implementation of the elastic graph matching

algorithm [9], [12]. The facial registration grid has only four

parameters, the x and y coordinates of the center-of-mass and the

horizontal and vertical grid line spacing. The image set includes a

total of 182 images, consisting of 106 male faces (76 females), 135

East Asian faces (47 non-East Asian), and 84 smiles (98 nonsmiles).

Sample images are shown in Fig. 2, which displays a typical range

of variation in the image conditions and grid position. The system

was periodically retrained as more images were acquired. The

entire procedure was carried out independently for each of the

three LDA projections. As the number of images in the training set

increased, the correct classification rate also increased. Fig. 3 shows

the performance of the three classifiers for various training set

sizes. In these experiments, the system was trained on all samples

of the training set but one identity and then tested on that person's

images. This ªleave-one-outº procedure was repeated for each

identity and the results averaged. Generalization performance was

91 percent for expression, 95 percent for ªrace,º and 92 percent for

sex recognition. The slight decrease in performance for the largest

image sets may be due to a statistical fluctuation or a change in

image acquisition conditions during the course of the live

demonstration, which took place over the space of two consecutive

working days, as no special care was taken to keep the conditions

constant.

4 EXPERIMENTS: FACIAL EXPRESSION

Six binary classifiers, one for each of the six fundamental facial

expressions (happy, sad, angry, fearful, surprised, disgusted),

were trained independently and combined to build a facial

expression categorizer. For an input image that is positively

classified for two or more expressions, the normalized distance, (3),

to the cluster centers is used as a deciding factor. An input image

that is not positively classified for any category is categorized as

neutral. These procedures are appropriate for the expression
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Fig. 2. Examples of facial images acquired during a live demo of the system at the annual ATR Open House.

Fig. 3. Generalization rates of the algorithm on three classification tasks as the number of training images is increased.



databases here. However, for mixed-expression data, an alternate

approach may be more suitable.
Because some of the facial expressions are distinguished by

subtle changes in facial configuration (e.g., disgust and anger), we

reasoned that more spatial accuracy in grid point registration

might be necessary for this task. A fiducial grid (shown in Fig. 1)

was positioned by manually clicking on 34 easily identifiable

points of each facial image.
The expression classifier was first tested using a set of 193

images of expressions posed by nine Japanese females, which has

been used in two previous studies of facial expression recognition

[10], [13]. Each expresser posed three or four examples of each of

the six fundamental facial expressions and a neutral face. Sample

images from the set are shown in Fig 4. In the first study, we used

the same testing paradigm as Zhang et al. [13]. The entire set of

images was divided into 10 segments; the discriminant vectors

were calculated using nine of these segments and the general-

ization performance tested on the remaining segment, with the

results averaged over all 10 distinct partitions. Fig. 5 shows the

results plotted as a function of the number of eigenvectors retained

before LDA. The generalization rate for this system is 92 percent.

To measure generalization over identity, the the image set was

partitioned into nine segments, each corresponding to one

expresser. The system was trained on eight of the segments and

then tested on the ninth. This was repeated for all nine possible
partitions of training and testing data and the results were
averaged. The average generalization rate for recognition of
expression for a novel expresser was 75 percent.

The system was also tested using the facial expression image set
of Ekman and Friesen [7], consisting of 110 images, of which 51 are
male and 59 are female. The system has a peak generalization rate
of 82 percent tested on all expression categories. Not all
expressions were equally well recognized by the system. Table 1
shows a confusion matrix showing misclassification rates for
expressions.

5 SALIENCY MAPS

The algorithm requires no explicit specification of which parts of
the facial image are pertinent to the classification process. It is
interesting to ask which aspects of the input data are most useful
for characterizing faces. The magnitude of each component of the

discriminant vector determines its influence on the classification
decision and is, therefore, a measure of the saliency of the
corresponding feature. The left side of Fig. 6 displays discriminant
vector component magnitude averaged over all frequencies and
orientations and facial expressions at each fiducial point on the
face. The size of each filled circle is proportional to the
discriminant vector component magnitude. The figure shows that
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Fig. 4. Samples from the Japanese females facial expression image set.

Fig. 5. Generalization (solid) and training set (dashed) performance rate for the

facial expression classifier, as tested using the Japanese female facial expression

image set.

TABLE 1
Confusion Matrix for the Facial Expression Classifier as Measured on

Ekman Image Set



the eyes and mouth are the most critical areas of the face for
determining facial expressions. The upper right of Fig. 6 plots
discriminant vector component magnitude averaged over all
frequencies, locations on the fiducial graph, and expressions as a
function of spatial orientation. The graph shows that horizontally
oriented filters are the most useful for recognizing facial expres-
sions and vertical orientations are the least useful. The lower right
of Fig. 6 plots discriminant vector component magnitude averaged
over orientation, location, and expression as a function of spatial
frequency.

6 DISCUSSION

This paper presented a novel algorithm for automatically extract-
ing semantic-level information about faces from digital images.
The algorithm synthesizes aspects of two major streams of research
on face processing: the labeled elastic graph matching approach of
the von der Malsburg group [9], [12] and Eigenface/Fisherface
algorithms [11], [1], [8].

Experiments with an automatically positioned rectangular grid
on images taken under live conditions showed that the system was
quite robust to shifts in node position, maintaining generalization
rates that exceed 90 percent for sex, ªrace,º and discrimination of
two expressions. This compares favorably with previous results
using other single-image methods on similar binary classification
tasks, summarized in Wiskott et al. [12].

A further advantage of the simple LDA-based classification
scheme is that it can be trained quickly. During a live
demonstration, the system was retrained nearly each time a
new image was acquired. Completely retraining the system
from scratch is also straightforward so that it can be rapidly
adapted to other binary classification tasks or the local
requirements of the implementation.

Sections 4 and 5 tested the algorithm on a finer discrimination
task: recognition of the 6 basic facial expressions. The general-
ization rate of the expression recognizer for the Japanese female
image set was 92 percent, essentially the same as the 90 percent
obtained with a multilayer perceptron in the study of Zhang et al.,

suggesting that the linear LDA algorithm is sufficiently powerful

for this classification task. However, fewer hidden units were used

by the nonlinear perceptron to attain this generalization rate. The

average generalization rate over expressor identity was 75 percent

for the Japanese female image set and 82 percent for the Ekman

pictures. This is still remarkably high considering the classifier has

only about 10 individuals in the training set to learn which featural

changes are due to identity and which are due to expression. The

rate is not significantly different from the 86 percent reported by

Padgett and Cottrell [2] on the same set of images, using principle

components analysis and a multilayer perceptron classifier. In

their work, however, input images were manually cropped and

registered before analysis. Higher generalization rates for expres-

sion recognition might be obtained if the number of individuals in

the training set was increased, as in Fig. 3 for the smile/nosmile

classifier.
The current algorithm is limited in that it may only be used to

extract categorical information about faces and neglects any

information that cannot be treated by multiple binary classifica-

tion. Our algorithm is also insensitive to color, which is often

present in single images, though often unreliable because of the

difficulty of accurate camera calibration. It would be interesting to

explore the utility of color information for face classification. A

further deficiency of the algorithm is that not all expressions are

recognized equally well (see Table 1). However, this may be

intrinsic to the facial expression recognition problem itself.
The saliency information displayed in Fig. 6 shows that the

regions around the eyes and mouth are more important than other

areas of the face for classifying the facial expressions. Filters of

intermediate spatial frequency were found to be slightly more

informative for expression classification. Notably, filters having

horizontal orientation were more heavily weighted in the dis-

criminant vector than other orientations. This seems intuitively

correct since the most noticeable expressive motions of the face are

the opening and closing of the mouth and eyes and raising and

lowering of the eyebrows. Displacement of roughly horizontal

edges forms the largest component of these motions.
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Fig. 6. Node, orientation, and frequency saliencies.
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